收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的


时间: 2016-7-28 分类: 作业习题  【来自ip: 18.158.123.201 的 热心网友 咨询】 手机版
 问题补充 如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

  网友答案:
热心网友
热心网友
1楼
解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得
数学公式
解得数学公式
故抛物线的解析式为y=x2+2x;

(2)①当AO为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,
则D在x轴下方不可能,
∴D在x轴上方且DE=2,
则D1(1,3),D2(-3,3);
②当AO为对角线时,则DE与AO互相平分,
∵点E在对称轴上,对称轴为直线x=-1,
由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1)
故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1);

(3)存在,
如图:∵B(-3,3),C(-1,-1),根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2.
∴△BOC是直角三角形.
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则数学公式=数学公式
即 x+2=3(x2+2x)
得:x1=数学公式,x2=-2(舍去).
当x=数学公式时,y=数学公式,即P(数学公式数学公式).
②若△PMA∽△BOC,则数学公式=数学公式
即:x2+2x=3(x+2)
得:x1=3,x2=-2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P(数学公式数学公式)或(3,15).
解析分析:(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标;
(3)根据相似三角形对应边的比相等可以求出点P的坐标.


点评:本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标.
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com