数的整除特征
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被7整除的数的特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
牢记能被n个特殊数整除的特征,归纳出一般性的规律。
(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。
(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。
(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。