约数个数与约数和定理
约数个数定理:设n的标准分解式为(1),则它的正约数个数为:
d(n)=(a1+1)(a2+1)…(ak+1)。
设自然数n的质因子分解式如n=?p1×p2×...×pk那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+Pk+Pk+…pk)