不定方程的分析求解
不定方程的定义
所谓不定方程是指未知数的个数多于方程的个数,且未知数受到某些(如要求是有理数,整数或正整数等等)限制的方程或方程组.不定方程也称丢番图方程,是数论的重要分支学科,也是数学上最活跃的数学领域之一,不定方程的内容十分丰富,与代数数论、几何数论、集合数论都有较为密切的联系.
下面对中学阶段常用的求不定方程整数解的方法做以总结:
一般常用的求不定方程整数解的方法
(1)分离整数法
此法主要是通过解未知数的系数中绝对值较小的未知数,将其结果中整数部分分离出来,则剩下部分仍为整数,则令其为一个新的整数变量,以此类推,直到能直接观察出特解的不定方程为止,再追根溯源,求出原方程的特解.
(2)辗转相除法
此法主要借助辗转相除式逆推求特解,具体步骤如下:
第一步,化简方程,尽量化简为简洁形式(便于利用同余、奇偶分析的形式);
第二步,缩小未知数的范围,就是利用限定条件将未知数限定在某一范围内,便于下一步讨论;
第三步,用辗转相除法解不定方程.
(3)不等式估值法
先通过对所考查的量的放缩得到未知数取值条件的不等式,再解这些不等式得到未知数的取值范围.
(4)逐渐减小系数法
此法主要是利用变量替换,使不定方程未知数的系数逐渐减小,直到出现一个未知量的系数为±1的不定方程为止,直接解出这样的不定方程(或可以直接能用观察法得到特解的不定方程为止,再依次反推上去)得到原方程的通解.
(5)分离常数项的方法
对于未知数的系数和常数项之间有某些特殊关系的不定方程,如常数项可以拆成两未知数的系数的倍数的和或差的不定方程,可采用分解常数项的方法去求解方程.
(6)奇偶性分析法
从讨论未知数的奇偶性入手,一方面可缩小未知数的取值范围,另一方面又可用2n或2n+1(n∈Z)代入方程,使方程变形为便于讨论的等价形式.
(7)换元法
利用不定方程未知数之间的关系(如常见的倍数关系),通过代换消去未知数或倍数,使方程简化,从而达到求解的目的.
(8)构造法
构造法是一种有效的解题方法,并且构造法对学生的创造性思维的培养有很重要的意义,成功的构造是学生心智活动的一种探求过程,是综合思维能力的一种体现,也是对整个解题过程的一种洞察力、预感力的一种反映.构造体现的是一种转化策略,在处理不定方程问题时可根据题设的特点,构造出符合要求的特解或者构造一个求解的递推式等.
(9)配方法
把一个式子写成完全平方或完全平方之和的形式,这种方法叫做配方法.配方法是式子恒等变形的重要手段之一,是解决不少数学问题的一个重要方法.在初中阶段,我们已经学过用配方法解一元二次方程,用配方法推到一元二次方程的求根公式,用配方法把二次函数化为标准形式等等,是数学中很常用的方法.
(10)韦达定理
韦达定理是反映一元二次方程根与系数关系的重要定理,广泛应用于初等代数、三角函数及解析几何中,应用此法解题时,先根据已知条件或结论,再通过恒等变形或换元等方法,构造出形如a+b、a×b形式的式子,最后用韦达定理.
(11)整除性分析法
用整除性解决问题,要求学生对数的整除性有比较到位的把握.
(12)利用求根公式
在解不定方程时,若因数分解法、约数分析均不能奏效,我们不妨将其中一个未知数看成参数,然后利用一元二次方程的求根公式去讨论.