您好,欢迎来到答案网! 请  登录  |  免费注册   收藏本站Ctrl+D    
答案网
  

 答案网首页 | 知识点首页 | 语文知识点 | 数学知识点 | 英语知识点 | 历史知识点 | 政治知识点 | 物理知识点 | 化学知识点 | 生物知识点 | 地理知识点 | 知识点梳理
 栏目类别:知识点 >> 高中 >> 数学

抛物线的标准方程及图象

更新时间:2016/9/29 14:51:00  手机版

  抛物线的标准方程及图像(见下表):

  抛物线的标准方程的理解:

  ①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;

  ②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为

  ③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;

  ④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。

  共同点:

  a.原点在抛物线上;

  b.焦点都在坐标轴上;

  c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的

  不同点:

  a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2

  b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

  求抛物线的标准方程的常用方法:

  (1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.

  (2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。

 上一篇:抛物线的定义
 小学数学知识点推荐
 初中数学知识点推荐
 高中数学知识点推荐
CopyRight @ 2018   知识点 www.zqnf.com    All Rights Reserved